
Design Patterns Explained: A New
Perspective on Object Oriented Design, 2nd
Edition (Software Patterns)

By Alan Shalloway, James R. Trott

Design Patterns Explained: A New Perspective on Object Oriented Design,
2nd Edition (Software Patterns) By Alan Shalloway, James R. Trott

"One of the great things about the book is the way the authors explain concepts
very simply using analogies rather than programming examples–this has been
very inspiring for a product I'm working on: an audio-only introduction to OOP
and software development."
–Bruce Eckel
"...I would expect that readers with a basic understanding of object-oriented
programming and design would find this book useful, before approaching design
patterns completely. Design Patterns Explained complements the existing design
patterns texts and may perform a very useful role, fitting between introductory
texts such as UML Distilled and the more advanced patterns books."
–James Noble
Leverage the quality and productivity benefits of patterns–without the
complexity! Design Patterns Explained, Second Edition is the field's simplest,
clearest, most practical introduction to patterns. Using dozens of updated Java
examples, it shows programmers and architects exactly how to use patterns to
design, develop, and deliver software far more effectively.
You'll start with a complete overview of the fundamental principles of patterns,
and the role of object-oriented analysis and design in contemporary software
development. Then, using easy-to-understand sample code, Alan Shalloway and
James Trott illuminate dozens of today's most useful patterns: their underlying
concepts, advantages, tradeoffs, implementation techniques, and pitfalls to avoid.
Many patterns are accompanied by UML diagrams.
Building on their best-selling First Edition, Shalloway and Trott have thoroughly
updated this book to reflect new software design trends, patterns, and
implementation techniques. Reflecting extensive reader feedback, they have
deepened and clarified coverage throughout, and reorganized content for even
greater ease of understanding. New and revamped coverage in this edition
includes

Better ways to start "thinking in patterns"●

How design patterns can facilitate agile development using eXtreme●

http://mbooknom.men/go/best.php?id=0321247140
http://mbooknom.men/go/best.php?id=0321247140
http://mbooknom.men/go/best.php?id=0321247140

Programming and other methods
How to use commonality and variability analysis to design application●

architectures
The key role of testing into a patterns-driven development process●

How to use factories to instantiate and manage objects more effectively●

The Object-Pool Pattern–a new pattern not identified by the "Gang of Four"●

New study/practice questions at the end of every chapter●

Gentle yet thorough, this book assumes no patterns experience whatsoever. It's
the ideal "first book" on patterns, and a perfect complement to Gamma's classic
Design Patterns. If you're a programmer or architect who wants the clearest
possible understanding of design patterns–or if you've struggled to make them
work for you–read this book.

 Download Design Patterns Explained: A New Perspective on Ob ...pdf

 Read Online Design Patterns Explained: A New Perspective on ...pdf

http://mbooknom.men/go/best.php?id=0321247140
http://mbooknom.men/go/best.php?id=0321247140
http://mbooknom.men/go/best.php?id=0321247140
http://mbooknom.men/go/best.php?id=0321247140
http://mbooknom.men/go/best.php?id=0321247140
http://mbooknom.men/go/best.php?id=0321247140
http://mbooknom.men/go/best.php?id=0321247140
http://mbooknom.men/go/best.php?id=0321247140

Design Patterns Explained: A New Perspective on Object
Oriented Design, 2nd Edition (Software Patterns)

By Alan Shalloway, James R. Trott

Design Patterns Explained: A New Perspective on Object Oriented Design, 2nd Edition (Software
Patterns) By Alan Shalloway, James R. Trott

"One of the great things about the book is the way the authors explain concepts very simply using analogies
rather than programming examples–this has been very inspiring for a product I'm working on: an audio-only
introduction to OOP and software development."
–Bruce Eckel
"...I would expect that readers with a basic understanding of object-oriented programming and design would
find this book useful, before approaching design patterns completely. Design Patterns Explained
complements the existing design patterns texts and may perform a very useful role, fitting between
introductory texts such as UML Distilled and the more advanced patterns books."
–James Noble
Leverage the quality and productivity benefits of patterns–without the complexity! Design Patterns
Explained, Second Edition is the field's simplest, clearest, most practical introduction to patterns. Using
dozens of updated Java examples, it shows programmers and architects exactly how to use patterns to design,
develop, and deliver software far more effectively.
You'll start with a complete overview of the fundamental principles of patterns, and the role of object-
oriented analysis and design in contemporary software development. Then, using easy-to-understand sample
code, Alan Shalloway and James Trott illuminate dozens of today's most useful patterns: their underlying
concepts, advantages, tradeoffs, implementation techniques, and pitfalls to avoid. Many patterns are
accompanied by UML diagrams.
Building on their best-selling First Edition, Shalloway and Trott have thoroughly updated this book to reflect
new software design trends, patterns, and implementation techniques. Reflecting extensive reader feedback,
they have deepened and clarified coverage throughout, and reorganized content for even greater ease of
understanding. New and revamped coverage in this edition includes

Better ways to start "thinking in patterns"●

How design patterns can facilitate agile development using eXtreme Programming and other methods●

How to use commonality and variability analysis to design application architectures●

The key role of testing into a patterns-driven development process●

How to use factories to instantiate and manage objects more effectively●

The Object-Pool Pattern–a new pattern not identified by the "Gang of Four"●

New study/practice questions at the end of every chapter●

Gentle yet thorough, this book assumes no patterns experience whatsoever. It's the ideal "first book" on
patterns, and a perfect complement to Gamma's classic Design Patterns. If you're a programmer or architect
who wants the clearest possible understanding of design patterns–or if you've struggled to make them work
for you–read this book.

Design Patterns Explained: A New Perspective on Object Oriented Design, 2nd Edition (Software
Patterns) By Alan Shalloway, James R. Trott Bibliography

Sales Rank: #371617 in Books●

Published on: 2004-10-22●

Original language: English●

Number of items: 1●

Dimensions: 9.00" h x 1.10" w x 7.00" l, 1.65 pounds●

Binding: Paperback●

480 pages●

 Download Design Patterns Explained: A New Perspective on Ob ...pdf

 Read Online Design Patterns Explained: A New Perspective on ...pdf

http://mbooknom.men/go/best.php?id=0321247140
http://mbooknom.men/go/best.php?id=0321247140
http://mbooknom.men/go/best.php?id=0321247140
http://mbooknom.men/go/best.php?id=0321247140
http://mbooknom.men/go/best.php?id=0321247140
http://mbooknom.men/go/best.php?id=0321247140
http://mbooknom.men/go/best.php?id=0321247140
http://mbooknom.men/go/best.php?id=0321247140

Download and Read Free Online Design Patterns Explained: A New Perspective on Object Oriented
Design, 2nd Edition (Software Patterns) By Alan Shalloway, James R. Trott

Editorial Review

From the Inside Flap
Should you buy the second edition if you already own the first?

The answer, of course, is yes! Let us tell you why.
Since the first edition was written, we have learned so much more about design patterns, including:
· How to use commonality and variability analysis to design application architectures
· How design patterns relate to and actually facilitate eXtreme Programming (XP) and Agile
Development
· How testing is a first-principle of quality coding
· Why the use of factories to instantiate and manage objects is critical
· Which set of patterns is essential for students to help them learn how to think in patterns
All of these topics are covered in this book. We have deepened and clarified what we had before and we
have added some new content that you will find very helpful, including:
· Chapter 15: Commonality and Variability Analysis
· Chapter 20: Lessons From Design Patterns: Factories
· Chapter 21: The Object-Pool Pattern (this is a pattern not covered by the Gang of Four)
· Chapter 22: Factories Summarized
We have changed the order in which we present some of the patterns. This sequence is more helpful for the
students in our courses as they learn the ideas behind patterns.
We have touched every chapter, incorporating the feedback we have received from our many readers over
these last three years.
And, to help students, we have created study questions for each chapter (with answers on the book’s
companion website).
We can honestly say this is one of the few second editions that is definitely worth buying — even if you have
the first one.
We would love to hear what you think.
- Alan and Jim
Design patterns and object-oriented programming. Theyhold such promise to make your life as a software
designer and developereasier. Their terminology is bandied about every day in the technical and eventhe
popular press. But it can be hard to learn them, to become proficient withthem, to understand what is really
going on.
Perhaps you have been using an object-oriented or object-basedlanguage for years. Have you learned that the
true power of objects is notinheritance but is in “encapsulating behaviors”? Perhaps you arecurious about
design patterns and have found the literature a bit too esotericand high-falutin. If so, this book is for you.
It is based on years of teaching this material to softwaredevelopers, both experienced and new to object
orientation. It is based uponthe belief—and our experience—that once you understand the basicprinciples
and motivations that underlie these concepts, why they are doingwhat they do, your learning curve will be
incredibly shorter. And in ourdiscussion of design patterns, you will understand the true mindset of
objectorientation, which is a necessity before you can become proficient.
As you read this book, you will gain a solid understanding oftwelve core design patterns and a pattern used
in analysis. You will learn thatdesign patterns do not exist in isolation, but work in concert with otherdesign
patterns to help you create more robust applications. You will gain enoughof a foundation that you will be
able to read the design pattern literature, ifyou want to, and possibly discover patterns on your own. Most
importantly, youwill be better equipped to create flexible and complete software that is easierto maintain.

Although the twelve patterns we teach here are not all of thepatterns you should learn, an understanding of
these will enable you to learnthe others on your own more easily. Instead of giving you more patterns
thanyou need to get started, we have included pattern-related issues that will bemore useful.
From Object Orientation to Patterns to True Object Orientation
In many ways, this book is a retelling of my personalexperience learning design patterns. This started with
learning the patternsthemselves and then learning the principles behind them. I expanded thisunderstanding
into the realms of analysis and testing as well as learning howpatterns relate to agile coding methods. The
second edition includes manyadditional insights I have had since publication of the first edition. Prior
tostudying design patterns, I considered myself to be reasonably expert inobject-oriented analysis and design.
My track record had included severalfairly impressive designs and implementations in many industries. I
knew C++and was beginning to learn Java. The objects in my code were well-formed andtightly
encapsulated. I could design excellent data abstractions forinheritance hierarchies. I thought I knew object-
orientation.
Now, looking back, I see that I really did not understand thefull capabilities of object-oriented design, even
though I was doing things theway most experts advised. It wasn’t until I began to learn designpatterns that
my object-oriented design abilities expanded and deepened.Knowing design patterns has made me a better
designer, even when I don’tuse these patterns directly.
I began studying design patterns in 1996. I was a C++/object-orienteddesign mentor at a large aerospace
company in the Northwest. Several peopleasked me to lead a design pattern study group. That’s where I met
myco-author, Jim Trott. In the study group, several interesting things happened.First, I grew fascinated with
design patterns. I loved being able to compare mydesigns with the designs of others who had more
experience than I. I discoveredthat I was not taking full advantage of designing to interfaces and that I
didn’talways concern myself with seeing if I could have an object use another objectwithout knowing the
used object’s type. I also noticed that beginners inobject-oriented design—those who would normally be
deemed as learningdesign patterns too early—were benefiting as much from the study group asthe experts
were. The patterns presented examples of excellent object-orienteddesigns and illustrated basic object-
oriented principles, which helped tomature their designs more quickly. By the end of the study sessions, I
wasconvinced that design patterns were the greatest thing to happen to softwaredesign since the invention of
object-oriented design.
However, when I looked at my work at the time, I saw that I wasnot incorporating any designpatterns into
my code. Or, at least, not consciously. Later, after learningpatterns, I realized I had incorporated many
design patterns into my code justout of being a good coder. However, now that I understand patterns better, I
amable to use them better.
I just figured I didn’t know enough design patterns yet andneeded to learn more. At the time, I only knew
about six of them. Then I had anepiphany. I was working as a mentor in object-oriented design for a project
andwas asked to create the project's high-level design. The leader of the projectwas extremely sharp, but was
fairly new to object-oriented design.
The problem itself wasn’t that difficult, but it required agreat deal of attention to make sure the code was
going to be easy to maintain.Literally, after about two minutes of looking at the problem, I had developed
adesign based on my normal approach of data abstraction. Unfortunately, it wasalso clear to me this was not
going to be a good design. Data abstraction alonehad failed me. I had to find something better.
Two hours later, after applying every design technique I knew, Iwas no better off. My design was essentially
the same. What was mostfrustrating was that I knew there was a better design. I just couldn’tsee it.
Ironically, I also knew of four design patterns that “lived”in my problem but I couldn’t see how to use them.
Here I was—asupposed expert in object-oriented design—baffled by a simple problem!
Feeling very frustrated, I took a break and started walking downthe hall to clear my head, telling myself I
would not think of the problem forat least 10 minutes. Well, 30 seconds later, I was thinking about it again!
ButI had gotten an insight that changed my view of design patterns: rather thanusing patterns as individual
items, I should use the design patterns together.

Patterns are supposed to be sewn together to solve a problem.
I had heard this before, but hadn’t really understood it.Because patterns in software have been introduced as
design patterns, I had always labored under the assumptionthat they had mostly to do with design. My
thoughts were that in the designworld, the patterns came as pretty much well-formed relationships
betweenclasses. Then, I read Christopher Alexander’s amazing book, TheTimeless Way of Building. I
learned that patterns existed at all levels—analysis,design, and implementation. Alexander discusses using
patterns to help in theunderstanding of the problem domain (even in describing it), not just usingthem to
create the design after the problem domain is understood.
My mistake had been in trying to create the classes in my problemdomain and then stitch them together to
make a final system, a process whichAlexander calls a particularly bad idea. I had never asked if I had the
rightclasses because they just seemed so right, so obvious; they were the classesthat immediately came to
mind as I started my analysis, the “nouns”in the description of the system that we had been taught to look
for. But I hadstruggled trying to piece them together.
When I stepped back and used design patterns and Alexander’sapproach to guide me in the creation of my
classes, a far superior solutionunfolded in only a matter of minutes. It was a good design and we put it
intoproduction. I was excited—excited to have designed a good solution andexcited about the power of
design patterns. It was then that I startedincorporating design patterns into my development work and my
teaching.
I began to discover that programmers who were new toobject-oriented design could learn design patterns,
and in doing so, develop abasic set of object-oriented design skills. It was true for me and it was truefor the
students that I was teaching.
Imagine my surprise! The design pattern books I had been readingand the design pattern experts I had been
talking to were saying that youreally needed to have a good grounding in object-oriented design
beforeembarking on a study of design patterns. Nevertheless, I saw, with my own eyes,students who learned
object-oriented design concurrently with design patternslearned object-oriented design faster than those just
studying object-orienteddesign. They even seemed to learn design patterns at almost the same rate
asexperienced object-oriented practitioners.
I began to use design patterns as a basis for my teaching. Ibegan to call my classes Pattern Oriented Design:
Design Patterns fromAnalysis to Implementation.
I wanted my students to understand these patterns and began todiscover that using an exploratory approach
was the best way to foster thisunderstanding. For instance, I found that it was better to present the
Bridgepattern by presenting a problem and then have my students try to design asolution to the problem
using a few guiding principles and strategies that Ihad found were present in most of the patterns. In their
exploration, thestudents discovered the solution—essentially the Bridge pattern—andremembered it.

Design Patterns and Agile/XP
The guiding principles and strategies underlying design patterns seem very clear to me now. Certainly, they
are stated in the “Gang of Four’s” design patterns book, but too succinctly to be of value to me when I first
read it. I believe the Gang of Four were writing for the Smalltalk community which was very grounded in
these principles and therefore needed little background. It took me a long time to understand them because of
limitations in my own understanding of the object-oriented paradigm. It was only after integrating in my own
mind the work of the Gang of Four with Alexander’s work, Jim Coplien’s work on commonality and
variability analysis, and Martin Fowler’s work in methodologies and analysis patterns that these principles
became clear enough to me so that I was able to talk about them to others. It helped that I was making my
livelihood explaining things to others so I couldn’t get away with making assumptions as easily as I could
when I was just doing things for myself.
Since the first edition of this book appeared, I have been doing a considerable amount of Agile development
and have become very grounded in eXtreme Programming (XP) coding practices, Test-Driven-Development
(TDD), and Scrum. Initially, I had a difficult time reconciling design patterns with XP and TDD. However, I

quickly realized that both have great value and both are grounded in the same principles (although they take
different design approaches). In fact, in our Agile software development boot camps, we make it clear that
design patterns, used properly, are strong enablers of agile development.
I will discuss many of the ways design patterns relate to agile management and coding practices throughout
the book. If you are not familiar with XP, TDD, or Scrum, do not be too concerned about these comments.
However, if this is the case, I suggest the next book you read be about one of these topics.

In any event, I found that these guiding principles andstrategies could be used to “derive” several of the
design patterns.By “derive a design pattern,” I mean that if I looked at a problemthat might be solved by a
design pattern, I could use the guiding principlesand strategies that I learned from patterns to come up with
the solution thatis expressed in a pattern. I made it clear to my students that we weren’treally coming up with
design patterns this way. Instead, I was justillustrating one possible thought process that the people who
came up with theoriginal solutions, those that were eventually classified as design patterns,might have used.
My abilities to explain these few, but powerful, principles andstrategies improved. As they did, I found that it
became more useful to explainan increasing number of the Gang of Four patterns. In fact, I use
theseprinciples and strategies to explain virtually all of the patterns I discuss inmy design patterns course.
I found that I was using these principles in my own designs bothwith and without patterns. This didn’t
surprise me. If using thesestrategies resulted in a design equivalent to a design pattern when I knew
thepattern was present, that meant they were giving me a way to derive excellentdesigns (since patterns are
excellent designs by definition). Why would I getany poorer designs from these techniques just because I
didn’t know thename of the pattern that might or might not be present anyway?
These insights helped hone my training process (and now mywriting process). I had already been teaching
my courses on several levels. Iwas teaching the fundamentals of object-oriented analysis and design. I
didthat by teaching design patterns and using them to illustrate good examples ofobject-oriented analysis and
design. In addition, by using the patterns toteach the concepts of object orientation, my students were also
better able tounderstand the principles of object orientation. And by teaching the guidingprinciples and
strategies, my students were able to create designs ofcomparable quality to the patterns themselves.
I relate this story because this book follows much the samepattern as my course (pun intended). Virtually all
of the material in this booknow is covered in one of our courses on Design Patterns,Test-Driven-
Development or Agile Development Best Practices1.
As you read this book, you will learn the patterns. But even moreimportantly, you will learn why they work
and how they can work together, andthe principles and strategies upon which they rely. It will be useful to
drawon your own experiences. When I present a problem in the text, it is helpful ifyou imagine a similar
problem that you have come across. This book isn’tabout new bits of information or new patterns to apply,
but rather a new way oflooking at object-oriented software development. I hope that your ownexperiences,
connected with the principles of design patterns, will prove to bea powerful ally in your learning.
Alan Shalloway
December, 2000
updated May, 2004
From Artificial Intelligence to Patterns to True Object Orientation
My journey into design patterns had a different startingpoint than Alan’s but we have reached the same
conclusions:
· Pattern-based analyses make you a more effective and efficientanalyst because they let you deal with
your models more abstractly and becausethey represent the collected experiences of many other analysts.
· Patterns help people to learn principles of object orientation.The patterns help to explain why we do
what we do with objects.
I started my career in artificial intelligence (AI) creatingrule-based expert systems. This involves listening to
experts and creatingmodels of their decision-making processes and then coding these models intorules in a
knowledge-based system. As I built these systems, I began to seerepeating themes: in common types of

problems, experts tended to work in similarways. For example, experts who diagnose problems with
equipment tend to lookfor simple, quick fixes first, then they get more systematic, breaking theproblem into
component parts; but in their systematic diagnosis, they tend totry first inexpensive tests or tests that will
eliminate broad classes ofproblems before other kinds of tests. This was true whether we were
diagnosingproblems in a computer or a piece of oil field equipment.
Today, I would call these recurring themes patterns. Intuitively, I began to look for these recurring themes as
I was designing newexpert systems. My mind was open and friendly to the idea of patterns, eventhough I did
not know what they were.
Then, in 1994, I discovered that researchers in Europe hadcodified these patterns of expert behavior and put
them into a package thatthey called Knowledge Analysis and Design Support, or KADS. Dr. KarenGardner,
a most gifted analyst, modeler, mentor, and human being, began toapply KADS to her work in the United
States. She extended the European’s work to apply KADS to object-orientedsystems. She opened my eyes to
an entire world of pattern-based analysis anddesign that was forming in the software world, in large part due
to ChristopherAlexander’s work. Her book, Cognitive Patterns (CambridgeUniversity Press, 1998), describes
this work.
Suddenly, I had a structure for modeling expert behaviors withoutgetting trapped by the complexities and
exceptions too early. I was able tocomplete my next three projects in less time, with less rework, and
withgreater end-user satisfaction, because:
· I could design modelsmore quickly because the patterns predicted for me what ought to be there.
Theytold me what the essential objects were and what to pay special attention to.
· I was able to communicatemuch more effectively with experts because we had a more structured way to
dealwith the details and exceptions.
· The patterns allowed meto develop better end-user training for my system because the patternspredicted
the most important features of the system.
This last point is significant. Patterns help end-usersunderstand systems because they provide the context for
the system, why we aredoing things in a certain way. We can use patterns to describe the guidingprinciples
and strategies of the system. And we can use patterns to develop thebest examples to help end-users
understand the system.
I was hooked.
So, when a design patterns study group started at my place ofemployment, I was eager to go. This is where I
met Alan who had reached asimilar point in his work as an object-oriented designer and mentor. The resultis
this book.
Since writing the first edition, I have learned just how deeplythis approach to analysis can get into your head.
I have been involved in manydifferent sorts of projects, many outside of software development. I look at
systemsof people working together, exchanging knowledge, exchanging ideas, living inremote places. The
principles of patterns and object-orientation have stood mewell here, too. Just as in computer systems, there
is much efficiency to begained by reducing the dependencies between work systems.
I hope that the principles in this book help you in your ownjourney to become a more effective and efficient
analyst.
James R. Trott
December, 2000
updated May, 2004
A Note About Conventions Used in This Book
In the writing of this book, we had to make severalchoices about style and convention. Some of our choices
have surprised ourreaders. So, it is worth a few comments about why we have chosen to do what wehave
done.
Approach
Rationale
First person voice

This book is a collaborative effort between two authors. We debated and refined our ideas to find the best
ways to explain these concepts. Alan tried them out in his courses and we refined some more. We chose to
use the first person singular in the body of this book because it allows us to tell the story in what we hope is a
more engaging and natural style.
Scanning text
We have tried to make this book easy to scan so that you can get the main points even if you do not read the
body, or so that you can quickly find the information you need. We make significant use of tables and
bulleted lists. We provide text in the outside margin that summarizes paragraphs. With the discussion of each
pattern, we provide a summary table of the key features of the pattern. Our hope is that these will make the
book that much more accessible.
Code examples
This book is about analysis and design more than implementation. Our intent is to help you think about
crafting good designs based on the insights and best practices of the object-oriented community, as expressed
in design patterns. One of the challenges for all of us programmers is to avoid going to the implementation
too early, doing before thinking. Knowing this, we have purposefully tried to stay away from too much
discussion on implementation. Our code examples may seem a bit lightweight and fragmentary. Specifically,
we never provide error checking in the code. This is because we are trying to use the code to illustrate
concepts.Examples in C++ and C# are also present at this site.
Strategies and
principles
Ours is an introductory book. It will help you be able to get up to speed quickly with design patterns. You
will understand the principles and strategies that motivate design patterns. After reading this book, you can
go on to a more scholarly or a reference book. The last chapter will point you to many of the references that
we have found useful.
Show breadth and give a taste
We are trying to give you a taste for design patterns, to expose you to the breadth of the pattern world but not
go into depth in any of them (see the previous point).

Our thought was this: If you brought someone to the USA for a two-week visit, what would you show them?
Maybe a few sites to help them get familiar with architectures, communities, the feel of cities and the vast
spaces that separate them, freeways, and coffee shops. But you would not be able to show them everything.
To fill in their knowledge, you might choose to show them slide shows of many other sites and cities to give
them a taste of the country. Then, they could make plans for future visits. We are showing you the major
sites in design patterns and then giving you tastes of other areas so that you can plan your own journey into
patterns.

How to read Java code if you are a C# developer
All of the code examples in this book are written in Java. If you do not have experience with Java but can
read C#, here is what you need to know:
Java uses the words extends and implements to denote a class that extends another class or one that
implements an interface, rather than the colon (":"). which is used for both purposes in C#..
Hence, in Java, you would see:
public class NewClass extends BaseClass
or
public class NewClass implements AnInterface

while in C# you would see:

public class NewClass : BaseClass
or
public class NewClass : AnInterface

All methods are virtual in Java and therefore you don’t specify whether they are new or overridden. There
are no such keywords in Java, all subclass methods override any methods they reimplement from a base
class. Although there are other differences, they won’t show up in our code examples.

How to read Java code if you are a C++ developer
This is a little more difficult, but not much more. The most obvious difference is the lack of header files. But
how to read the combined header-code file is self-evident. In addition to the C# differences, Java never stores
objects on the stack. Java stores objects in heap storage and stores variables that hold references (pointers) to
objects on the stack. Every object must be created with a “new”.
Hence, in Java you would see:
MyClass anObject= new MyClass();
anObject.someMethod();

while in C++ you’d see:

MyClass *anObject= new MyClass();
anObject->someMethod();

Thus, Java code looks like C++ code if you add a ‘*’ in the declaration of every variable name that
references an object and convert the ‘.’ to a ‘->’.
Feedback
Design patterns are a work in progress, a conversationamong practitioners who discover best practices, who
discover fundamentalprinciples in object orientation.
We value your feedback on this book:
· What did we do well or poorly?
· Are there errors that need to be corrected?
·
New in the Second Edition
This second edition represents several changes andimprovements over the first edition. It reflects what we
have learned fromusing and teaching design patterns over the last several years as well as thegenerous and
valuable feedback we have received from our readers.
Here is a highlight of changes:
· Reorders chapters, moving the Strategy pattern earlier
· Expands the discussion about Commonality and Variability Analysis(CVA)
· Adds a synthesis of eXtreme Programming and design patterns
· Makes all code examples complete rather than notional orfragments. All code is in Java. The website
also has C# and C++ examples
· Explains why the use of factories as objectinstantiators/managers is extremely useful.
· Added one design pattern not in the Gang of Four: the Object Poolpattern.
· Added a discussion of the pitfalls of patterns and the caution totreat patterns as guides to help you think.
Patterns are not truth!
We also made numerous small corrections in grammar andstyle.

From the Back Cover

"One of the great things about the book is the way the authors explain concepts very simply using analogies
rather than programming examples—this has been very inspiring for a product I'm working on: an audio-
only introduction to OOP and software development."

—Bruce Eckel

"...I would expect that readers with a basic understanding of object-oriented programming and design would
find this book useful, before approaching design patterns completely. Design Patterns Explained
complements the existing design patterns texts and may perform a very useful role, fitting between
introductory texts such as UML Distilled and the more advanced patterns books."

—James Noble

Leverage the quality and productivity benefits of patterns—without the complexity! Design Patterns
Explained, Second Edition is the field's simplest, clearest, most practical introduction to patterns. Using
dozens of updated Java examples, it shows programmers and architects exactly how to use patterns to design,
develop, and deliver software far more effectively.

You'll start with a complete overview of the fundamental principles of patterns, and the role of object-
oriented analysis and design in contemporary software development. Then, using easy-to-understand sample
code, Alan Shalloway and James Trott illuminate dozens of today's most useful patterns: their underlying
concepts, advantages, tradeoffs, implementation techniques, and pitfalls to avoid. Many patterns are
accompanied by UML diagrams.

Building on their best-selling First Edition, Shalloway and Trott have thoroughly updated this book to reflect
new software design trends, patterns, and implementation techniques. Reflecting extensive reader feedback,
they have deepened and clarified coverage throughout, and reorganized content for even greater ease of
understanding. New and revamped coverage in this edition includes

Better ways to start "thinking in patterns"●

How design patterns can facilitate agile development using eXtreme Programming and other methods●

How to use commonality and variability analysis to design application architectures●

The key role of testing into a patterns-driven development process●

How to use factories to instantiate and manage objects more effectively●

The Object-Pool Pattern—a new pattern not identified by the "Gang of Four"●

New study/practice questions at the end of every chapter●

Gentle yet thorough, this book assumes no patterns experience whatsoever. It's the ideal "first book" on
patterns, and a perfect complement to Gamma's classic Design Patterns. If you're a programmer or architect
who wants the clearest possible understanding of design patterns—or if you've struggled to make them work
for you—read this book.

© Copyright Pearson Education. All rights reserved.

About the Author

Alan Shalloway is founder, CEO, and principal consultant of Net Objectives, an object-oriented consulting
and training organization. An object-oriented consultant and software developer for over 20 years, he is a

frequent speaker at leading development conferences, including SD Expo, Java One, OOP, and OOPSLA.
He is a certified Scrum master. He is co-author of An Introduction to XML and its Family of Technologies.
Shalloway holds a master's degree in computer science from MIT.

James R. Trott currently works as a senior consultant for a large financial institution in the Pacific
Northwest. He has used object-oriented and pattern-based analysis techniques throughout his 20-year career
in knowledge management and knowledge engineering. He holds a master of science in applied
mathematics, an MBA, and a master of arts in intercultural studies.

© Copyright Pearson Education. All rights reserved.

Users Review

From reader reviews:

Jennifer Stewart:

Hey guys, do you really wants to finds a new book you just read? May be the book with the name Design
Patterns Explained: A New Perspective on Object Oriented Design, 2nd Edition (Software Patterns) suitable
to you? Often the book was written by famous writer in this era. Often the book untitled Design Patterns
Explained: A New Perspective on Object Oriented Design, 2nd Edition (Software Patterns)is the main one of
several books this everyone read now. That book was inspired a number of people in the world. When you
read this e-book you will enter the new way of measuring that you ever know previous to. The author
explained their concept in the simple way, therefore all of people can easily to be aware of the core of this
book. This book will give you a lot of information about this world now. To help you to see the represented
of the world in this book.

Martha Albarado:

Your reading sixth sense will not betray an individual, why because this Design Patterns Explained: A New
Perspective on Object Oriented Design, 2nd Edition (Software Patterns) book written by well-known writer
whose to say well how to make book which might be understand by anyone who have read the book. Written
within good manner for you, dripping every ideas and producing skill only for eliminate your hunger then
you still uncertainty Design Patterns Explained: A New Perspective on Object Oriented Design, 2nd Edition
(Software Patterns) as good book not only by the cover but also with the content. This is one e-book that can
break don't ascertain book by its deal with, so do you still needing an additional sixth sense to pick this!? Oh
come on your looking at sixth sense already told you so why you have to listening to a different sixth sense.

Martha Holt:

The book untitled Design Patterns Explained: A New Perspective on Object Oriented Design, 2nd Edition
(Software Patterns) contain a lot of information on this. The writer explains the girl idea with easy technique.
The language is very clear to see all the people, so do not worry, you can easy to read this. The book was
published by famous author. The author will take you in the new period of literary works. You can actually
read this book because you can read on your smart phone, or model, so you can read the book throughout

anywhere and anytime. If you want to buy the e-book, you can open up their official web-site and also order
it. Have a nice go through.

Charles Powers:

Beside this Design Patterns Explained: A New Perspective on Object Oriented Design, 2nd Edition
(Software Patterns) in your phone, it could give you a way to get closer to the new knowledge or data. The
information and the knowledge you can got here is fresh in the oven so don't possibly be worry if you feel
like an outdated people live in narrow small town. It is good thing to have Design Patterns Explained: A
New Perspective on Object Oriented Design, 2nd Edition (Software Patterns) because this book offers for
you readable information. Do you oftentimes have book but you do not get what it's exactly about. Oh come
on, that will not end up to happen if you have this in your hand. The Enjoyable option here cannot be
questionable, like treasuring beautiful island. So do you still want to miss that? Find this book as well as read
it from right now!

Download and Read Online Design Patterns Explained: A New
Perspective on Object Oriented Design, 2nd Edition (Software
Patterns) By Alan Shalloway, James R. Trott #IM0WD2SCOLV

Read Design Patterns Explained: A New Perspective on Object
Oriented Design, 2nd Edition (Software Patterns) By Alan
Shalloway, James R. Trott for online ebook

Design Patterns Explained: A New Perspective on Object Oriented Design, 2nd Edition (Software Patterns)
By Alan Shalloway, James R. Trott Free PDF d0wnl0ad, audio books, books to read, good books to read,
cheap books, good books, online books, books online, book reviews epub, read books online, books to read
online, online library, greatbooks to read, PDF best books to read, top books to read Design Patterns
Explained: A New Perspective on Object Oriented Design, 2nd Edition (Software Patterns) By Alan
Shalloway, James R. Trott books to read online.

Online Design Patterns Explained: A New Perspective on Object Oriented Design, 2nd
Edition (Software Patterns) By Alan Shalloway, James R. Trott ebook PDF download

Design Patterns Explained: A New Perspective on Object Oriented Design, 2nd Edition (Software
Patterns) By Alan Shalloway, James R. Trott Doc

Design Patterns Explained: A New Perspective on Object Oriented Design, 2nd Edition (Software Patterns) By Alan
Shalloway, James R. Trott Mobipocket

Design Patterns Explained: A New Perspective on Object Oriented Design, 2nd Edition (Software Patterns) By Alan
Shalloway, James R. Trott EPub

IM0WD2SCOLV: Design Patterns Explained: A New Perspective on Object Oriented Design, 2nd Edition (Software
Patterns) By Alan Shalloway, James R. Trott

